
International Institution for Technological Research and Development
Volume 1, Issue 4, 2016

Determination and Prevention of Pernicious activity in Cloud

Computing Environment

Shaishav R. Shah

LJIET, GTU

Ahmedabad, India

Shah.shaishav@outllook.com

Abstract—Cloud computing environment is a pool of different

services, which deliver services in an economical way. However,

for many security sensitive applications such as critical data

processing, we must provide necessary security protection for

migrating those critical application services into shared open

cloud infrastructures. In this paper I present a framework to

assure the pernicious data processing in cloud Computing

Environment. This framework provide stronger attacker

pinpointing power. In this pernicious service provider based on

dynamically derived trust scores.

Keywords—Cloud; Security; Secure Dataflow Processing;

Serice Integrity

I. INTRODUCTION

Cloud System [1] have recently emerged as popular
resource Leasing Infrastructure. Application service providers
can lease a set of resources from the cloud system, without
investing for their own infrastructures. Cloud systems are
particularly amenable for data processing services [2], which
are often extremely resource-intensive.

Data-intensive computing has recently received much
research attention with many real world application such as
security surveillance, specific study and business intelligence
in particular, our work focuses on dataflow processes systems
that provide high performance continues Processing over
massive data streams. Attacks can also pretend to be legitimate
service providers to compromise dataflow processing. One of
the top security concerns for cloud users to verify the integrity
of data processing results, especially for critical data processing
applications such as fraud detection and business intelligence.

In this paper, I present the new integrated framework for
multitenant cloud system; my framework builds upon previous
work IntTest[8], RunTest[7] and AdapTest[6]. First come
RunTest it is lightweight application level scheme that can
dynamically verify the integrity of Data processing results in
the cloud infrastructure and pinpointing a malicious serivce
providers when inconsistent result detected. Then comes
AdapTest[6] is novel adaptive runtime service integrity
attestation framework for large-scale cloud systems. AdapTest
builds on top of our previously developed system RunTest[7]
that performs randomized probabilistic attestation and employs
a clique-based algorithm to pinpoint malicious nodes.
AdapTest[6] dynamically evaluates the trustiness of different

services based on previous attestation results and adaptively
selects attested services during attestation. AdapTest
dynamically derives a set of trust scores to achieve
differentiated probabilistic attestation. Than third modified
scheme is IntTest takes a holistic approach by systematically
examining both consistency and inconsistency relationships
among different service providers within the entire cloud
system[8]. IntTest examines both per-function consistency
graphs and the global inconsistency graph. The per-function
consistency graph analysis can limit the scope of damage
caused by colluding attackers, while the global inconsistency
graph analysis can effectively expose those attackers that try to
compromise many service functions[8].

In my work I validate aggregation analysis, which provide
tightly coupled group of service providers, which contains
same service functions in form of Binary search tree. In which
we compare the output of the result with adjacent service
functions (compare result with one Parent and two child) by
executing same task on those nodes of the tree. If there is any
inconsistency among them then trust of the node will be
decrease as per result and then it have to lost its position in
tree. And it has to set on lower level of the tree. Like Parent
become a child and child become a parent.

By taking Binary search Tree structure approach I can not
only pinpoint attackers more efficiently, also provides result
auto correction that can automatically replace corrupted data
processing result produced by pernicious service provider with
benign service Providers. And Trustiness of the service
provider is stored in CSV file, which located at the server. Also
mapping of the tree stored in another CSV file. And than it will
used to create tree structure. Basically tree structure is used to
monitoring of trustiness of service provider on specific services
service function and for comparing the result of the service
provider.

Specifically, this paper makes the following contributions:

 I provide a scalable and efficient distributed service
integrity framework for large-scale cloud computing
environment.

 I present a Tree based service integrity detection
scheme that can achieve higher pinpointing accuracy
than previous techniques.

International Institution for Technological Research and Development
Volume 1, Issue 4, 2016

 We describe a result auto correction technique that
can automatically correct the corrupted results
produced by pernicious attackers.

 I use file system instead of database for storing
temporary data of trustiness and fault detection rate.

I have implemented this scheme on cloudsim. The rest of paper
organized as follows: Section 2 presents my system model.
Section 3 presents design details. Section 4 provides an study
about our scheme. Section 5 presents the experimental results.
Finally paper concludes in section 6.

II. PRELIMINARY

 In this section, we first introduce the software-as-a-service

cloud system model. We then describe our problem

formulation including the service integrity attack model

and our key assumptions.

A. SaaS Cloud System Model

SaaS cloud builds upon the concepts of software as a
service [3] and service-oriented architecture [4], [5], which
allows application service providers to deliver their
applications via large-scale cloud computing infrastructures.
For example, both Amazon Web Service and Google
AppEngine provide a set of application services supporting
enterprise applications and big data processing.

In a large-scale SaaS cloud, different ASPs can provide the
same service function. Those functionally equivalent service
components exist because: 1) service providers may create
replicated service components for load balancing and fault
tolerance purposes; and 2) popular services may attract
different service providers for profit. Which service functions
are provided by which service providers in the SaaS cloud.
Neither cloud users nor individual ASPs have the global
knowledge about the SaaS cloud such as the number of ASPs
and the identifiers of the ASPs offering a specific service
function.

III. PROBLEM FORMULATION

Given a SaaS cloud system; the goal is to pinpoint any
malicious service provider that offers an untruthful service
function. Which does not require any special hardware or
secure kernel support on the cloud platform. We now describe
our attack model and our key assumptions as follows:

A. Attack Model

A malicious attacker can pretend to be a legitimate service
provider or take control of vulnerable service providers to
provide untruthful service functions. The stealthy behavior
makes detection more challenging due to the following
reasons: 1) the detection scheme needs to be hidden from the
attackers to prevent attackers from gaining knowledge on the
set of data processing results that will be verified and therefore
easily escaping detection; and 2) the detection scheme needs to
be scalable while being able to capture misbehavior that may
be both unpredictable and occasional. In a large-scale cloud
system, we need to consider colluding attack scenarios where
multiple malicious attackers collude or multiple service sites

are simultaneously compromised and controlled by a single
malicious attacker. Attackers could sporadically collude, which
means an attacker can collude with an arbitrary subset of its
colluders at any time. Attackers can also change their attacking
and colluding strategies arbitrarily.

B. Assumptions

 Cloud have own trusted Service Functions, which
provide by all the third party service providers.

IV. DESIGN AND METHODOLOGY

In this section, I present the basis of my approach or
framework: probabilistic Tree Data structure for decide which
two service functions will check their results. Then on basis of
their consistency/inconsistency we can decide the trust of the
service function of service of service provider.

In my work I will create a tree based on their trust. Then
while attempting a service by user at that time its output
compare with their child node. When it is compare with it’s
child node if unlatch in result found then result of child node of
object node is compared with the result of parent node of object
node. if result match with each other then trust of object node
is decrease by one . and it loose its position in the tree and it
have to traverse on the lover level of the tree.

Before correction

After Correction

A. Result Autocorrection

1) My work can not only pinpoint malicious service

providers but also automatically correct corrupted data

processing results to improve the result quality of the cloud

data processing service.

Level 3

Level 2

Level 1

Level 0 Root
Node

SP1

SP3

SP7 SP8

SP4

SP9 SP10

SP2

SP5 Sp6

Level 3

Level 2

Level 1

Level 0 Root
Node

SP1

SP7

SP3 SP8

SP4

SP9 SP10

SP2

SP5 Sp6

International Institution for Technological Research and Development
Volume 1, Issue 4, 2016

2) When the output / result mismatch each other then it will

be the replace after comparing third high trusted node or Parent

node.

V. SECURITY ANALYSIS

Although our scheme guarantee zero false positives even
though there are multiple independent colluding groups, it will
be difficult for attackers to escape our detection with multiple
independent colluding groups since attackers will have
inconsistency links not only with benign nodes but also with
other groups of pernicious nodes. Additionally, our approach
limits the damage colluding attackers can cause if they can
evade detection in two ways. First, our scheme limits the
number of functions, which can be simultaneously attacked.
Second, our approach ensures a single attacker cannot
participate in compromising an unlimited number of service
functions without being detected.

VI. CONCLUSION

In this paper I have presented framework to verify the

integrity of distributed system. Furthermore, it provides result

autocorrection to automatically correct compromised results to

improve the result quality.

REFERENCES

[1] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.  
[2] Juan Du, Xiaohui Gu “Adaptive Data-Driven Service Integrity

Attestation for Multi-Tenant Cloud System” Bill Lin University of
California, San Diego IEEE Press Piscataway, NJ, USA ©2011J.

[3] Zhou Li, Sumayah Alrwais,Yinglian Xie, Fang YuXiaoFeng Wang On
this and that. Finding the Linchpins of the Dark Web: a Study on
Topologically Dedicated Hosts on Malicious Web Infrastructures ISSN :
1081-6011

[4] G. Geethakumari, Abha Belorkar On this and that. Regenerating Cloud
Attack Scenarios using LVM2 based System Snapshots for Forensic
Analysis ISSN: 2089-3337

[5] Hung-Jen Liao , Chun-Hung Richard Lin , Ying-Chih Lin , Kuang-Yuan
Tung On this and that. Intrusion detection system: A comprehensive
review ISSN: 1084-8045

[6] Juan Du, Wei Wei, Xiaohui Gu, and Ting Yu On this and that. RunTest:
Assuring Integrity of Dataflow Processing innCloud Computing
Infrastructures ISSN: 978-1-60558-936-7

[7] Juan Du, Xiaohui Gu On this and that. Adaptive Data-Driven Service
Integrity Attestation for Multi-Tenant Cloud Systems ISSN: 978-1-
4577-0103-0

[8] Juan Du, Daniel J. Dean, Yongmin Tan, Xiaohui Gu, Ting Yu On this
and that. Adaptive Data-Driven Service Integrity Attestation for Multi-
Tenant Cloud Systems ISSN: 1045-9219

